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B Motivation and Contribution

e Cyber-physical systems (CPS) become pervasive

e Many CPS are safety-critical, making it paramount to ensure their
safe operation

* The majority of CPS are influenced by noise and uncertainty
* Models of CPS are either unknown or too complex to be of any use

B CPS Models

A discrete-time stochastic control system (dt-SCS) is a tuple & =
(X, U, V,,,w, f) where:
e X C R"and U C R™ are the sets of state and input, respectively.

* w 1s a sequence of independent and 1dentically distributed (1.1.d.) ran-
dom variables on uncertainty space V,,,.

o f: X x U xV, — X is the state transition map such that:
r(t+1)= f(z(t),u(t),w(t)), VteN.
B Safety Problem

Consider a dt-SCS &, where the map f and the probability distribu-
tion of w are unknown. Consider a safety specification denoted by
U = (X, X,). System S is called safe with respect to W, denoted by
S = VU, if all trajectories of S started from the initial set X, C X
under a control policy C', never reach unsafe set X, C X.

B Safety Verification of dt-SCS

Definition 1: Control Barrier Certificate

Consider a dt-SCS S and a safety specification V. Function B : X —
R is called a control barrier certificate (CBC) for S if there are
constants 0 <~y < A and a feedback controller C': X — U such that:

Vo € X(), (a)
Vr e X, (b)
Vr e X\X,. ()

B(z) <7,

Theorem 1: Safety Probability

Let S be a given dt-SCS with a safety specification V. Suppose there
is a CBC B and its associated controller C' for the system &. Then,
one gets P{S¢c =V} > 1 — 4, where S¢ represents the dt-SCS S

controlled by C'.

B Data-driven Synthesis of CBC

Finding a CBC B and its corresponding controller C' for a dt-SCS &
is not possible, since the map f and the probability distribution of w
are unknown.

(1) Considering CBC B and Controller (' as two separate neural net-
works, N, : R” — R7 and N, : R” — R™, respectively. Then, collec-
tion of sample pairs (x;, u;), 7 € {1,..., N}, from the sets of state and

input, and also defining the loss function:
4 N

L=>% % ReLU(g/(x)),
=1 1=1
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91(%) — —Nb(l'z) — 1), Vo, € X
g2(w;) = Ny(z;) — v — m, Vr;, € X
93(%‘) = —Nb(%‘) + A — 1, Vo, € X,
ga(z;) = E[Ny(f (2, No(z), w) | )| — Ny(a;) — n, Va; € X\ X,

(2) Replacing the expectation term 1n g, with its empirical mean by
using i.i.d. samples w;,j € {1,..., N}, for each pair of (z;,u;),7 €
{1,..., N}. Hence:

N
B 1
gu(z;) = = > Ny(f (2, Ne(:), w;)) = Ny(:) + 0 — n, Va; € X\ X,

9=1

where 7 1s a negative robustness parameter ensuring that conditions
in (a)-(c) are strongly satisfied, 0 > 0 is defined for the empirical mean
approximation, and N.(z;) is bounded within U.

B Correctness Guarantee of Neural Networks

Theorem 2: Correctness Guarantee
Consider a dt-SCS S and a safety specification ¥ = (X, X,). As-

sume that all constraints g;, go, g3, g4 are Lipschitz continuous with
respect to pair (x, u), with a Lipschitz constant £. Suppose N = %

for some 0 > 0 and 0 < 8 < 1, where M is the upper bound for
Var(N;( f(z,N*(z),w))) < M for trained neural networks N; and
N” and for all x € X. Collect N data pairs (x;, u;) with a quantiza-
tion parameter €. If Le +n < 0, then P {SN: = \IJ} > ] — % with a
confidence of at least 1 — 3.

B Case Study

Consider a dt-SCS of an inverted pendulum with additive zero-mean Gaussian

noise (standard deviation = 0.01). Assume X = [—%,%}2, Xy = [ 1”5,17;}2,
X\X, = [—%, %}2, and U = [—10, 10]. The parameters are set to 5 = 0.001, v = 1,

— 25, N = 100, 0 = 2, and € = 0.00157. The neural network N; comprises 100
neurons across each of the 5 hidden layers, while N, consists of 25 neurons in each

of its 3 hidden layers, with learning rates of [, = 10~* and [, = 1077, respectively.
Then, we obtain P{Sy. = ¥V} > 0.96 with a confidence of at least 99.76%.
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The constructed CBC over X (left) and the «-level of CBC (right).
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